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Relative cost of producing skeletal organic matrix versus calcification:

evidence from marine gastropods

A.R.Palmer

Department of Zoology, University of Alberta; Edmonton, Alberta T6G 2E9, Canada *, and
Bamfield Marine Station; Bamfield, British Columbia VOR 1B0, Canada ’

Abstract

Rates of shell regeneration in 15 species from all three
suborders of prosobranch gastropods were related in-
versely to percent organic matrix of the shell. Since
the gastropods in these experiments were not fed and
therefore forced to rely upon stored energy reserves
while regenerating, this- inverse relationship suggests
that the production of skeletal organic matrix is more
demanding metabolically than the crystallization of cal-
cium carbonate. Such a relationship between the organic
and inorganic components of carbonate skeletons may
help explain the evolutionary. loss of skeletal microstruc-
tures with a high percent organic matrix in several major
Invertebrate groups.

Introduction

Skeletal growth in aquatic invertebrates is usually thought
10 occur at the expense of tissue growth and reproduction,
hence the presumed advantage to skeletons of economical
design (Taylof, 1973; Currey and Taylor, 1974; Vermeij,
1978; Highsmith 1979; Palmer, 1979, 1981). The evolution-
ary significance of such a trade-off, however, clearly
depends upon the magnitude of the cost of skeleton
production. This cost remains to be measured in its
entirety (Taylor and Layman, 1972; Simkiss, 1976; Ra-
thootin, 1979; Vincent, 1982).

Skeletons of marine invertebrates, with the possible
exception of echinoderms (Raup, 1966; O’Neill, 1981), are
composed of two structural elements: inorganic crystals,
wsually of calcium carbonate, and an organic matrix
“ithin and between crystals (Watabe and Wilbur, 1976;
Rhoads and Lutz, 1980; Nakahara et al, 1981; Wheeler
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et al, 1981). Numerous estimates have been made of the
fraction of the energy budget devoted to skeletal organic
matrix in marine invertebrates including: serpulid poly-

- chaetes (Dixon, 1980), balanomorph barnacles (Wu and

Levings, 1978), mytiloid (Kuenzler, 1961; Dame, 1972;
Bernard, 1973; Griffiths and King, 1979; Rodhouse, 1979;
Vahl, 1981), unionoid (Cameron et al, 1979) and veneroid
(Hughes, 1970; Mohlenberg and Kiorboe, 1981) bivalves,
and prosobranch gastropods (Paine, 1971a). The energetic
cost associated with calcium carbonate precipitation, how-
ever, has rematned a persistent unknown. I report here
evidence obtained from 15 species of marine prosobranch
gastropods, that suggests that organic matrix is the meta-
bolically more demanding component of shell material to
produce: species with a higher fraction of skeletal organic
matrix regenerated less shell material per day in the
absence of feeding than those with a lower fraction. A
comparatively high cost of the organic matrix component
may have been an important factor influencing the evolu-
tionary loss of crystal microstructures with a high fraction
of organic material in several groups of marine inverte-
brates: the Brachiopoda (Williams and Rowell, 1965), and
both the Gastropoda and the Bivalvia (Hare and Abelson,
1965; Taylor and Layman, 1972; Taylor, 1973; Carter,
1980; Rosenberg, 1980).

Material and methods

Gastropods of 15 species (Table 1) were collected from the
vicinity of Bamfield Marine Station, on the west coast of
Vancouver Island, (Bamfield, British Columbia, Canada,
Lat. 48°50'N, Long. 125°08'W) and returned to the labo-
ratory where they were numbered individually using
Brady Wire Markers (W. H. Brady Co., Rexdale, Ontario,
Canada) coated with a clear cement (Dekophane, Rona
Pearl Corp, Bayonne, NJ, USA). Shell length was mea-
sured from the apex to the anterior-most edge of the
aperture except for archeogastropods; limpet shell length
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was measured from the anterior to the posterior edge of  gastropod (approximately a to ¥ (?f the body whot] ¢ exp
the aperture, trochid and turbinid shell sizes were mea-  Wwas broken away with point-nosed pliers to simulate sigf | of
sured as maximum body whorl diameter across the axis of .dama.ge. Indwldual.s in the second group were treye| wh
coiling starting at the lip of the aperture (all measurements identically to those in the first, but th‘ey were not damagej | 14,
to 0.1 mm with Vernier calipers). Live gastropods were  and therefore served as a control. Within 12 h of damag
weighed with a Mettler PK300 balance to the nearest mg  all individuals of both damaged and undamaged grouy | o5
while suspended in seawater to estimate shell weight; were we%ghed underwater to provide initial estimates of { 197
weight suspended in seawater, with the appropriate  shell weight (Palmer, .1982). They' then were held eon | we
regressions, provides a very accurate estimate of shell dry  tinuously immer§ed Wlth(?llt food 1n_p1ast1c freezer con | taf
weight (© > 0.999; Palmer, 1982). tainers with plastic mesh 51des. In running seawater aquarz | fio
To measure relative rates of regeneration, collections of for the duration of the experiments. All individuals were | sl
each species examined were divided into two treatment  reweighed underwater at the end of the experimentsty | of
groups. In the first group, a portion of the aperture of each  estimate the amount of new shell material produced. The | fil
te1
Table 1. Mean shell sizes, shell weights, amount of shell removed and regenerated, and percent organic matrix for 15 species of po- | 0
sobranch gastropods. Values in parentheses are standard errors except for % organic matrix which are standard errors followed byt | 10
number of samples ashed. Treatment = experimental treatment (u=undamaged, d=damaged). n=sample size. Shell lengths were mex €0
sured before damage. Undamaged immersed weight refers to the.wei.ght of liYe i.ndividuals suspended in seawater prior to any _sh_e!l alter- a
ation. Percent new shell produced was calculated as the cumulative increase in immersed weight after damage divided by the initial, ur-
damaged immersed weight X 100. Days =total days over which each species was allowed to produce new shell material. The percent shel or
regenerated per day was calculated by subtracting the percent shell produced by undamaged individuals from that produced by damagd to
ones and dividing the remainder by the number of days over which regeneration took place. For Diodora aspera, since none were exan- fu
ined, I have assumed that the percent new shell produced was 0 for undamaged individuals (average for the remaining archeogastropods W
was actually 0.15) to calculate the percent shell regenerated per day n
Species Treat- n Shell Undamaged % shell % new shell Days % Shell % organic si
ment length immersed removed produced regen. matrix m
(mm) weight (g) per day st
Archeogastropoda *
Collisella digitalis u 2 17.0(065) 029 (0.062) - ~0.72(0.153) 39 0071 28904604 | ©
d 4 17.3(081) 026 (0.032)  22.8 (2.00) 2.03 (0.576) u
Diodora aspera u 0 - - - - 3 0064 2580109 | O
d 2 33.1(3.55) 1.45(0.565)  21.2(0.37) 2.48 (0.447) v
Homolapoma luridum  u 4 8.3(0.15) 0.13 (0.008) - 1.01(1.008) 39  —0033 442003424 | (
d 8 83(0.18)  0.14(0.010)  21.8(1.93)  —0.27 (0.350) | t
Tegula funebralis u 5 16.9 (2.08) 1.34 (1.509) - -0.06 (0429 35 0.035 443002752 ! f
d 16 13.9 (0.46) 0.63 (0.062)  20.3 (1.40) 1.15 (0.31R8) ( a
T. puliigo u 5 17.9(0.60) 1.06 (0.048) - 0.35¢0470) 29  —0.030 4.10(045L) 1
d 12 177(031)  114(0.045) 153(1.00)  -0.52(0.217) ' .
Mesogastropoda 1
Littorina scutulata u 4 12.9(0.39) 0.22 (0.032) - -1.07(0.252) 39 0.024 3.08 (0.5083) Co
d 13 1320045  026(0.031) 136(122)  —0.14(0.275)
L. sitkana u 3 15.1(1.76) 0.45 (0.131) - 0.47(0.328) 39 0.059 2.68 (0.4025)
d 11 143(078)  035(0.045)  20.5 (1.17) 2.78 (0.789) ]
Opalia chacei u I 18409 0.21 () - 0.48 () 39 0.193 2.53(04750)
d 4 18.3(1.34) 0.22(0.037y 216 (2.26) 8.02 (2.025)
Neogastropoda
Amphissa columbiana  u 3 16.1(0.98)  0.21(0.045) - 8.05(3.557) 39 0.158 2.54(0.1886) |
. d 7 173(068)  022(0.037)  25.4(3.08) 14.21 (2.787) i
Ceratostoma foliatum u 2 40.1 (3.30) 2.95 (0.607) - -0.37(0.280) 29 0.057 2.14(0.4864)
. d 4 307(294)  293(0.656)  33.5(1.54) 1.27 (0.350)
Ocencbra interfossa u 1 17.0(-) 0.37 () _ ~027 () 39 0.048 2.86 (04214 '
_ d 4 16.6 (2.38) 0.33(0.124) 226 (3.16) 1.62 (0.944) ‘
0. lurida u 2 158(120)  0.24 (0.052) ~ 189(0.842) 39 0.132 3160601
o 8 16.5 (0.70) 0.29 (0.033) 19.1 (1.51) 7.05 (1.498) |
Searlesia dira 1(:1 ‘118 26.3 (1.03) 1.20 (0.196) - 5.30(0.515) 53 -0.018 2.09 (0083 l
hats emarginat d ’ ?31 (0.56)  1.01(0.081)  14.4(0.78) 6.24 (0.275). 4
g o 16-; Eg-gg 8-%2 Eg-gig s 7.90(3.320) 35 0369 1.66(0.1064
T lomellosa . g 31.0 2-45 2- . 6 (1.08) 20.82 (2.537) 2
q % 03 E 1-333 2-2‘71 (0.607) - 2.37(0.953) 35  0.126 1.56(005
S(L S7(0.273)  20.5(0.95)

6.78 (0.974) z

1
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experiments were conducted during June, J uly and August
of 1980 and 1981 at the Bamfield Marine Station, during
which time seawater temperatures ranged from 12.5° to
143°C.

Percent organic matrix was measured as the weight
loss of dried shell after ashing (Vinogradov, 1953; Paine,
1971b). At the termination of the experiment, gastropods
were killed by freezing, allowed to decompose partially in
tap water, and removed from the shell. After decomposi-
tion of any residual tissue was complete (1 to 3 wk), the
shells were rinsed for 30 to 60s in a 5% sodium hypo-
chlorite solution to try to remove any adsorbed organic
film, rinsed again in tap water, and then dried at room
temperature (ca 21 °C). Prior to ashing, shells were ground
to a fine powder with a mortar and pestle, placed in pre-
roasted, pre-weighed aluminum trays, and oven-dried to
constant weight at 60° to 70°C. For species with small
shells, the entire shell was pulverized; for larger species
only the first 2 to % of the body whorl was powdered
to avoid introducing errors associated with weathering, or
fungal or algal infection of older shell (Rasmussen, 1973).
Weight losses after ashing of samples of older shell
material taken from the same individuals exhibited con-
siderable variation within and among species: older shell
material sometimes lost more weight than more recent
shell, but sometimes less. When more than one ash sample
was taken from a single shell, only the result for the most
recently produced shell was used. Before and after ashing,
trays and their contents were weighed to the nearest
005mg with a Mettler B6 analytical balance. The trays
were then placed in a muffle furnace at room temperature
(ca 21°C) which was subsequently set at 550°C, and
turned on. Ash weights were measured two hours after the
furnace had reached equilibrium temperature (60 min
after switching on). Preliminary tests indicated that two
hours (plus the 1h warmup) was the optimum time to
achieve maximal combustion of organic material with
minimal conversion of CaCQ; to CaO (Palmer, unpub-
lished data).

Results

Individuals of nearly all species continued to produce shell
material whether damaged or not, even though they were
not feeding (Table 1). In addition, for most species, in-
dividuals with damaged shells produced more shell ma-
terial than individuals with undamaged shells, a pattern
noted in other invertebrates including scleractinian corals
(Loya, 1976), ostreid bivalves (Loosanoff and Nomejko,
1955) and pulmonate gastropods (Wilbur, 1973). Of
particular interest, the amount of additional shell material
produced by regenerating gastropods decreased signifi-
cantly with increasing skeletal organic matrix content
(r=0.62, P=0.015; Fig. 1). Decreased regeneration with
higher percent of organic matrix was also apparent within
¢ach prosobranch suborder although sample sizes were too
small to demonstrate significance (Fig. 1). There was no
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Fig. 1. Relation between mean percent of shell material regen-
erated per day by damaged individuals and mean percent skeletal
organic matrix (actual values and sample sizes in Table 1). Error

bars correspond to * one standard error; when not present they
are less than the distance across the symbol

Percent Regeneration (%/day)

significant association among species between the percent
of additional shell regenerated by damaged gastropods
and (a) initial shell weight (r=0.15, P=0.59), (b) relative
shell weight (log shell wt/shell length; r=0.38, P=0.17),
or (c) percent shell removed (r=0.41, P=0.13); thus
differences in initial size, relative shell weight or degree of
damage inflicted were not responsible for the above
pattern. Minor weight losses by some species (= 1%)
probably reflect a combination of minor shell erosion, and
tissue weight Joss since tissue weight represents
a small but measurable portion of immersed weight (< 5%;
Palmer, 1982).

Discussion

The energetics of skeleton production in marine inverte-
brates has proven to be a vexing problem. The primary
difficuity is that while direct measurements can be made
of the caloric content of the organic matrix (Kuenzler,
1961; Hughes, 1970; Paine, 1971a; Dame, 1972; Bernard,
1973; Wu and Levings, 1978; Cameron etal, 1979;
Griffiths and King, 1979; Rodhouse, 1979; Dixon, 1980;
Mohlenberg and Kiorboe, 1981; <Vahl, 1981), the mineral-
ized portion of the skeleton has no caloric value. To
estimate the total cost of skeleton production, it is thus
necessary to measure not only the caloric content of the
organic matrix but also the energy expended metabolically
in both synthesis of the matrix and precipitation of the
mineralized component. This latter component, the meta-
bolic energy expended in skeleton formation, has eluded
measurement.

Starving gastropods were used in the regeneration
experiments to estimate this metabolic expenditure, since
they would have been forced to draw to a large extent
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upon reserves to produce new shell. These reserves would
have been consumed both as a source of materials (amino
acids and amino sugars; Degens eral, 1967) and as a
source of metabolic energy for protein synthesis and
calcification. By subtracting new shell material produced
by undamaged individuals from that produced by dam-
aged individuals (Table 1, Fig. 1), differences among spe-
cies in rates of shell production due to (a) possible
differences in physiological condition at the beginning of
the experiment, or (b) possible differences in ability to
utilize dissolved organic material (Manahan et al, 1982) or
surface microflora, could be scaled out. Both damaged
and undamaged individuals of each species should have
been able to take advantage of any such supplemental
energy sources equally.

Since there is probably a strong selective advantage to
replacing lost skeletal material rapidly (Loosanoff and
Nomejko, 1955; Wilbur 1973; Loya, 1976) and regaining
lost living space, all species should have regenerated as
much of the lost shell as possible. However, species whose
shells contained a lower fraction of organic material
regenerated significantly more shell than those with a high
fraction (Fig. 1). This relationship suggests that the two
structural components of molluscan shells, organic matrix
and crystals of calcium carbonate, are not equally de-
manding to produce metabolically.

Three interpretations of this relationship are possible.
First, shell regeneration may have required organic com-
pounds (amino acids or amino sugars; Degens et al., 1967)
in limited supply during the experiment because the
gastropods were not being fed. Starving gastropods appear
to rely in part on protein catabolysis for metabolic energy
(Stickle and Duerr, 1970; Stickle and Bayne, 1982), thus
amino acids may have been required for other metabolic
needs. However, even fed gastropods would experience a
demand for amino acids for tissue growth and reproduc-
tion, thus from the standpoint of fitness amino acids are
probably always in short supply. Unfortunately, the
possibility that particular amino acids necessary for
synthesizing organic matrix were in disproportion-
ately short supply cannot be ruled out entirely with
the present data. Second, there may have been a limit
to the rate at which the organic matrix could be pro-
duced, thus species with a higher percent organic ma-
trix could not have regenerated shell as rapidly. Else-
where, T have demonstrated the existence of an upper limit
to the rate of shell growth that may limit the maximum
rate of body growth (Palmer, 1981), but the actual cause of
this upper limit, either the rate of synthesis of organic
matrix or the rate of growth of ecrystals of calcium
carbonate, remains to be determined experimentally.
More important to the present argument, however, abso-
lute rates of shell production during regeneration were less
than the maximum rates of shell production observed in
fed individuals (Palmer, unpublished data), thus it seems
unlikely that the rate of protein synthesis would have been
limiting. Third, the energetic cost of protein synthesis may
have been higher than the energetic cost of mineralization,

A.R.Palmer: Cost of skeletal organic matrix in marine gastropods

thus gastropods with a higher percent organic matrix may
have regenerated less total shell while starving because of
the greater drain on energy reserves. Preliminary, direy
measurements of the cost of calcification support this thir
interpretation: the cost of calcification appears to be les

than ¥ to %o that of protein synthesis (Palmer, un

published).

An important assumption implicit to the above exper
mental approach is that regenerated shell material i
comparable in organic matrix composition to normal shel
material. Regenerated shell in some species of marine
invertebrates, although exhibiting similar general organi-

zation, differs from normal shell in microstructural detal

[e.g. nautiloid cephalopods (Meenakshi eral, 1974)
pteriomorph (Meenakshi ez al., 1973) and paleoheterodont
(Tsujii, 1976) bivalves]. However, these studies examined
regeneration well back from the normal growing edge of
the shell, and differences in regenerated shell were very
likely a reflection of changes in the generative capacity of
medial compared to marginal mantle tissue, rather than
direct result of regeneration per se. Studies of marginal
shell repair in prosobranch gastropods (Andrews, 1935
Geller, 1982) have revealed little if any difference between
normal and regenerated shell except for a brief disruption
of the continuity of shell layers: at the point of breakage.
Even if some differences do exist between normal and
regenerated shell produced at the margin of the aperture,
the qualitative conclusion about the relative metaboli
importance of skeletal organic matrix in prosobranch
gastropods is justified if a less stringent assumption is
valid. If the differences among species in the percent
organic matrix of regenerated shell parallel the differences
in the percent organic matrix of normal shell, the same
result would obtain.

If confirmed for other invertebrate groups, the relative:
ly high cost of organic matrix may be one reason for the
independent, evolutionary loss of crystal microstructures
with a high percent of organix matrix. A well known
evolutionary trend in the Brachiopoda is the disz.ip-
pearance in the lower Paleozoic of many groups having
chitinophosphatic skeletons (Williams and Rowell, 1965).
The chitinophosphatic skeletons of modern species of
brachiopods have a much higher proportion of organit
material than the calcareous skeletons of their contempt:
raries. In both the Gastropoda and the Bivalvia, there is
repeated evolutionary tendency to lose nacre and prismat
ic microstructures from the shell (Hare and Abelson
1965; Taylor and Layman, 1972; Taylor, 1973; Cartel:
1980; Rosenberg, 1980). Both these microstructures have 2
higher percent organic matrix than other common micf®
structures in molluscan shells (Taylor and Layman, 1972)
This evolutionary trend was considered enigmatic becass®
of nacre’s superior mechanical properties (Currey and
Taylor, 1974; Currey, 1977), but is less surprising if t
organic matrix is diSpr0portion‘ately evxpenSiVVC to produC€~
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